"RFM" etiketli yazılar:

14 Mart 2021 Pazar

RFM’in Doğrusu – 1

Linkedin’de “BigQuery’de SQL ile RFM analizi yaptık. Amacımız müşteri kitlesi içinde hangilerinin sitemiz için daha değerli olduğunu bulmaktı. K-means clustering ve BigQuery makine öğrenimi algoritmasını kullanarak her kullanıcıyı RFM değerlerine göre segmentledik. ” diye başlayan bir çalışma okudum.

Çalışmayı yapan arkadaş, adım adım tüm çalışmayı yazmıştı. Esinlendiği kaynak olarak da şu yazıyı referans vermişti.

Referansta da “User Segmentation using RFM analysis in BigQuery ML and Visualization in the Data Studio” (BigQuery ML’de RFM analizi kullanarak Kullanıcı Segmentasyonu ve Data Studio’da Görselleştirme) denilmiş.

RFM ile ilgili en çok yapılan hata, RFM sonuçlarına göre segmentasyon yapılmasıdır. Oysa, önce segmentasyon yapılmalı, sonra segment bazında RFM çalışması yapılmalıdır.” diye yorum yazdım.

Gerekçeyi de eklemek için daha önce bu konuda yayınladığım yazıları [1] , [2] , [3] tekrar okuduğumda yeteri kadar açıklamadığını ve bu vesileyle, RFM’i yeniden anlatan bir yazı yazmak gerektiğini düşündüm. Danışmanlık yaptığım bir mobilya şirketi için RFM modeli hazırlamıştım. IT ile sorun yaşıyorlardı ve “asgari IT kullanarak müşteriyi anlamaya” ihtiyaçları vardı.

Benim tasarımım ve onların müşteri deneyimi birikimiyle birlikte oluşturduğumuz RFM modelini hayata geçirdiler. Hatta kısa süre sonra erken uyarı sistemi olarak kullanmaya başladılar. Birkaç sene sonra da bir MS CRM Dynamics çözüm ortağı ile anlaştılar.

Bu çözüm ortağının kurucusu beni buldu. O kurumla birlikte yaptığımız RFM modelinin (ki artık sadece RFM denemezdi) ne kadar kullanışlı olduğunu görmüş ve modeli tasarlayanla tanışmak istemiş.

RFM analizi bir devirler çok konuşulan bir yöntemdi. Bu yazıda, geleneksel RFM’in neden bugünkü veri ve teknolojik ortamda geçerli olmadığını ve nasıl değişiklik yapılırsa, asgari IT desteğiyle başarılı sonuçlar alınabileceğini anlatacağım.

😉

RFM İngilizce bir kısaltma.

  • R: Recency (Müşterinin en son alışverişinden bu yana ne kadar zaman geçtiği = Zaman açısından yakınlık)
  • F: Frequency (Müşterinin belirli bir zaman diliminde yaptığı alışveriş sayısı = Sıklık)
  • M: Monetary (Müşterinin F için temel alınmış belirli zaman diliminde ne kadar ciro yaptığı = Ciro)

Geleneksel RFM analizlerinde R, F ve M’nin her biri 1 – 5 arası gruplara ayrılır. Sonra sıralanır. 5-5-5 olan müşteriler çok değerlidir; 1-1-1 olan müşteriler olmasa da olur.

Bazı geleneksel (bugünkü veri yönetimi ortamında bence KESİNLİKLE YANLIŞ olan) RFM hesaplamalarında bir kurumun tüm müşterileri aynı ölçeklerle değerlendirilir ve analiz sonucunda “hangi müşterilerin değerli olduğunun bulunacağı” düşünülür. Bu yöntem için neden KESİNLİKLE YANLIŞ dediğimi anlatayım.

Önemli not: RFM’in geleneksel şekilde kullanılması kesinlikle geleneksel modelleri bugün uygulayanların suçu değil. Yerli – yabancı birçok kaynakta RFM bu şekilde yazılmış.

Eğitimlerimde, neden yanlış olduğunu ve doğrusunu uzun uzadıya anlatıyorum. Yukarıda referans verdiğim [1] , [2] , [3] yazılar yeterince açıklayıcı olmadığı için burada aktarmaya çalışacağım. Uzun bir yazı olursa, lütfen kusuruma bakmayın.

😉

RFM demek İngilizcede FRM demekten daha kolaydır ama bence önce F ile başlanmalıdır.

“Neden?” diye sorarsanız… R (zaman açısından yakınlık) aslında F (sıklık)’ın bir sonucudur. Alışveriş sıklığı fazla olan, örneğin ayda 3 kere mağazaya (veya e-ticaret sitesine) gelip alışveriş yapan bir müşterinin R değeri ister istemez 0 – 10 gün arasında olur. R aslında F’den türeyen bir değer olduğu için, F’de temel aldığınız süre (tanımda “belirli bir zaman diliminde yaptığı alışveriş sayısı” demiştik) yani o ZAMAN DİLİMİ, çalışmanın en önemli parçasıdır.

Bana “R aslında F’nin doğal sonucu olmayabilir. Zaman dilimini bir yıl alırsak ve yılda 3 kez gelmiş ama son 10 aydır hiç uğramamış olabilir” derseniz, size iki soru sorarım.

1 – RFM analizini ne amaçla yapıyorsunuz?

2 – RFM analizini hangi sıklıkta yapmayı düşünüyorsunuz?

Bu soruya yanıt olarak yılda bir, iki yılda bir gibi uzun bir süre verirseniz,

3 – Neden o zaman dilimini seçtiniz? diye üçüncü soruyu sorarım.

Bu üç sorunun yanıtları, F’in temeli olan zaman dilimine nasıl karar verdiğinizi sorgulamaktır.

Zaman diliminin seçimi çok önemlidir. Temel alacağınız zaman dilimi sektörler arasında değişiklik gösterir. Mevsimsel etkisi olan (abiye konfeksiyon gibi) sektörler ile zaten sıkça gidilen (süpermarket gibi) sektörleri aynı zaman diliminde değerlendiremezsiniz.

Konaklama sektöründe bile farklı zaman dilimleri üzerinde çalışılır. Şehir oteli ile tatil köyü farklı ölçütler kullanır. Tatil köyü veya kayak otelleri (eğer RFM yaparlarsa) en az bir yıllık zaman dilimi almalı ama değerlendirmeyi 3 – 4 sene boyunca her sene RFM analizi aldıktan sonra yapmalı. Bir yıllık zaman dilimi aldığında da ertesi sene turizm sezonu başlarken değil sezon biter bitmez analiz yapılmalıdır. Yani, bir yıllık zaman dilimi aldıktan sonra “müşteri 10 ay önce 3 kere gelmiş” demek için haklı ve geçerli bir senaryonuz olmalı.

Örneğin: Daha turizm sezonu açılır açılmaz, havalar ısınmadan gelen yaşlı turistlerden olabilir. Bir başka yaşlı turist grubu da havaların sıcaklığı azaldıktan sonra Eylül gibi, tatil köyü kapanmadan hemen önce geliyordur. Aslında aynı segment.

İşte bu nedenle, “önce segmentasyon , sonra RFM çalışması yapılmalı” diyorum.

Dikkat ederseniz, “RFM analizi yapılmalı mı?” diye de sorguluyorum. Özellikle bugünün veri kaynayan ortamında.

Sorunun yanıtını da vereyim: Eğer kurumunuzdaki BT ekibi CRM konusunda çok yetkin değilse RFM’i erken uyarı sistemi gibi kullanabilirsiniz. Kullanabilirsiniz ama… önce bazı konularda ön çalışma yapmanız gerek.

😉

F’e (alışveriş sıklığına) tekrar bakalım.

Bir mağaza veya dükkan için “oraya çok sık giderim” dediğinizde… Eğer işyerinizin yakınında bir lokantayı söylüyorsanız “haftada 2 – 3 kez” anlamına geliyordur. Ama spor malzemeleri satan bir mağaza ise, ayda bir kez bile oldukça sık sayılır.

Demek ki… sıklık kavramı, işyerinin özelliğine, sektörüne, sattığı ürün veya hizmete göre değişiyor.

😀

Çalışmanın bundan sonrasında hem mobilya, hem mutfak aletleri (buzdolabı ve bulaşık makinesinden mutfak robotu, tencere tava, tost makinesine kadar ev için gerekli hemen her alet) hem de ev tekstili ürünleri (yatak çarşafından havlu ve bornoza, halıdan döşemelik kumaşa kadar hemen her tekstil ürünü) satan bir mağazalar zinciri olduğunu düşünerek devam edeceğim.

Not: İstanbul’da daha bir dikey uzmanlaşma var. Mobilya, mutfak aletleri ve ev tekstili ürünleri satanlar ayrı markalar altında zincirler oluşturuyor. Anadolu’da birçok şehirde, ev için gerekli hemen her şeyi satan mağazalardan görmüşümdür. Bazıları “çeyiz mağazası” olarak sıfatlanıyor.

RFM’in temeli olan F’yi hesaplarken 5 (en sık) için şu kavramı kullanırız: Mağazadan çıkmıyorlar” veya “mutlaka uğruyorlar” dediğimizde hangi sıklığı esas alırsınız? diye sorarız. Evlenmenin (veya birlikte yaşamanın) arifesinde olan çiftler için “haftada 2” gibi bir sıklık olur.

Şehirdeki en bilinen mobilya + mutfak eşyaları + ev tekstili satan markasınız. Evlenmenin hemen öncesinde olan müşterileriniz haftada bir-iki kere gelecekler. Bazen çift olarak, bazen (parayı ödeyecek olan) baba ve annelerle mağazanızı ziyaret edecekler. Çoğunlukla bir şeyler satın alacaklar. Evdeki eksiklerini tamamladıkça size gelmeleri azalacak.

Aynı çift, birlikte yaşamaya başladıklarının ikinci senesinde yine “mağazadan çıkmıyorlar” denildiğinde ayda bir sıklık düşünülür. Bebek olacağı haberini almışlarsa, sıklık yine artar.

Çalışmanın sonunu beklemeden buraya ekleyeyim. Sadece 3 başlık (R ve F ve M) yetersizdir. Son satın alınan 3 – 4 ürün de bir başka sütun olarak yer almalıdır.

Gelelim orta yaşta birine… Onun için “çok sık uğrar” dediğimizde muhtemelen ayda bir-iki ziyaretten bahsediyoruzdur. Birden sıklık artmışsa… ya ev-ofis çalışmaya geçmiştir, evi düzenlemek için alışveriş yapıyordur; ya boşanma öncesindedir, yeni ev düzenliyordur; ya da çocuğu evleniyordur ve parasını o ödeyecektir.

DİKKAT: Burada 3 önemli konudan bahsediyorum.
1 – Neden son satın alınan 3 – 4 ürün bir başka sütun olarak yer almalı?
2 – Neden önce segmentasyon, sonra RFM çalışması yapılmalı?
3 – RFM analizini neden yapıyorsunuz?
sorularının yanıtını anlatıyorum.

Bu sektörde RFM Analizini erken uyarı sistemi olarak kullanacaksanız, en geç ayda bir kez hazırlamanızı öneririm. Böylece müşterilerinizin yaşam evresindeki değişiklikleri anlarsınız.

Önemli bir noktayı da atlamayalım. Geleneksel RFM modeli kesinlikle yaşam boyu değeri (YBD) ölçmek için kullanılamaz. YBD gelecekle ilgilidir, oysa geleneksel RFM sadece geçmişi gösterir. Geleceğe ilişkin ipuçları görmek isterseniz, bahsettiğim eklemeleri yapmanız gerekir.

Bu arada, son satın alınan 3 – 4 ürün sadece yaşam evresi değişimini ölçmek için değil, rekabete kaybınızı ölçmek için de kullanılır.

Evlenmeye (veya birlikte yaşamaya) karar vermiş bir çift önce yatak odası takımı alır, sonra mutfak, sonra salon, vb… diye müşteri deneyim haritası çıkarmışsanız, neleri sizden satın almadığını da görürsünüz. Onları muhtemelen rakiplerinizden almışlardır.

İşiniz bitmedi: Yukarıdaki ev-ofis çalışmaya karar vermiş veya boşanmış kişi örneğini de dikkate almalısınız. Sizinle sık alışveriş yapabilecek her persona için deneyim yolculuğu haritası çıkarmalı ve RFM analizinizi anlamlandırmalısınız.

😀

Yazı çok uzadı ve RFM’in sadece F’inden bahsettik.

Buraya kadar yazılan kısmı özetlersek,

  • Her sektör, hatta her kurum için (F’nin dolayısıyla R’nin temeli olan) ayrı zaman dilimleri söz konusu.
  • Her segment için ayrı RFM yapılmalı. Dolayısıyla, önce segmentasyon, sonra RFM yapılır.
  • Yakın geçmişte çok alışveriş yapması, (evlilik öncesindeki çift örneği gibi) aynı şekilde devam edeceği anlamına gelmez. Dolayısıyla, basit tahminler için bile geleneksel RFM modelini kullanamazsınız.
  • 5-5-5 ölçekli RFM modeli, bugünün veri ve teknoloji ortamında artık hükümsüzdür.

RFM’in kalan R ve M harflerini ve RFM çalışmasının yanına eklenmesi gereken diğer maddeleri daha sonra ele alacağım. Hepsini bir araya getirdikten sonra, abone olanlara bir kitapçık şeklinde sunmayı amaçlıyorum.

.

08 Mart 2014 Cumartesi

Dinleyen, söyleyenden arif

Eskiden sık söylenen bir söz vardı: “Dinleyen söyleyenden arif gerek” derlerdi büyüklerimiz. (A. Selim Tuncer’in bu konuda okunası bir yazısı var.)

Montaigne’in, “Aydın okuyucu, yazarın düşündüklerinden daha fazla anlam bulabilir” cümlesinin de aynı anlama geldiğini düşünmüşümdür.

Umberto Eco,  “Genç Bir Romancının İtirafları” isimli kitabında, kendi yazdıkları konusunda okurların bulduklarının derinliğinden bahseder.

😉

Yıllar önce, uluslararası bir marka Türkiye’deki mağaza zinciri için kart çıkaracaktı. Sadakat kartı projesinin 3 kilit kişisi benden eğitim talep etti. Şimdiye kadar yaptığım en odaklı eğitimlerden biri oldu. Sadece 3 kişiyle, 3 tam gün boyunca “veriyi ve değişimi anlamlandırma” çalışmaları yaptık.

Bana güzel bir teşekkür mesajı yazmışlardı.

🙂

Geçtiğimiz hafta bir workshop’ta, güzel bir şekilde karşıma çıktı. O şirkete CRM projesinde teknoloji hizmeti veren şirketin Genel Müdürü ile tanıştım.

Şirketin RFM modelini [1] , [2] , [3] çok beğenmiş. “Kimin modeli?” diye sorduğunda benim adımı vermişler. O zamandan beri benimle tanışmak istediğinden söz etti.

Şirketin CRM sistemi o kadar gelişmiş ki, bütünleşik alt-yapı düşünen Avrupa’daki genel müdürlük “Bizden 10 sene ileridesiniz, siz devam edin” diyerek onları serbest bırakmış.

Bana anlatıldığında gururlandım.

😀

Gururlandım ama… böbürlenmedim. Bir şirkette çalışan 3 orta kademe yöneticisi, hepi topu 3 gün boyunca anlatılanlardan yola çıkıp güzel örnekler yaratmışlarsa, başarı benden çok anlatılanları hayata geçirenlere aittir.

Dinleyenlerin söyleyenden arif olduğu kesindir.

😉

 

07 Eylül 2010 Salı

RFM'in M'si

CRM’in önemli ölçüm kavramlarından olan RFM (Recency – Frequency – Monetary) üzerine  yazmaya Ekim 2009’da başlayıp, F’yi yazmıştım. Çok uzun bir ara sonra, Mayıs 2010’da R’yi yazdım.

Alışveriş sıklığı’ndan (F) başlamamın nedeni,  alışveriş tarihinin yakınlığı (R)’nın, bu kavramın bir türevi olması. Bugün M parçasını da yazayım diyorum…

Önce tercüme (tekrar)…

Sırayla…

  • Recency (alışveriş tarihinin yakınlığı)
  • Frequency (alışveriş sıklığı)
  • Monetary (alışveriş cirosu)

😀

Müşterinin sizin için harcadığı parayı bulurken, bir zaman birimi kullanmak zorundasınız. RFM‘in kendi içinde tutarlı olmasını sağlamak için alışveriş sıklığı için (F’de)  kullandığınız zaman birimin kullanmanızı öneririm.

Alışveriş sıklığını (F) sezon başına almışsanız, sezonluk harcama tutarını; eğer yıllık sıklığı almışsanız, yıllık müşteri cirosunu M ölçeğine koymalısınız.

RFM çalışmalarının hepsinde olduğu gibi, M’de de müşteri tecrübesinin uygulamaya yansıtılması çok önemlidir. Şöyleki:

  • Önce ortalama müşterinin ne kadar para harcadığına bakarsınız. Bu sizin 3’üncü derecenizi belirler.
  • Her şeyini bizden alır” dediğiniz müşteri sizin dükkanlarınızda ne kadar para harcayabilir diye düşünmeniz gerekir. Bu sizin 5’inci derecenizi belirler. Büyük ihtimalle 3’üncü dereceye belirlediğiniz tutarın iki katından çok daha fazla bir miktar bulursunuz.
  • Bir kere uğramış, birşeyler almış ve sonra hiç gelmemiş kişileri de 1’e koyacaksınız. Dolayısıyla, genelde bir defalık alışverişin ortalama tutarı da sizin 1’inci derecenizdir.
  • Aralıkların eşit olması gerekmez. Zaten aşağıdaki örnekte göreceğiniz gibi eşit olamaz.

Örnek: Yapı malzemeleri ve mobilya satan perakendeci için bulduğumuz alışveriş cirosu (M) sonuçları şu şekildeydi

M = yılda

  • >5000 TL             5
  • 2500 – 5000 TL    4
  • 500 – 2500 TL      3
  • 250 –  500 TL       2
  • 250 TL >              1

🙂

Daha önceki yazılarda vurgulamıştım. Burada tekrar hatırlatayım. Müşteri tecrübesinin bir yansıması olduğu için, ilk başlangıçta tüm firma için tek bir RFM yapsanız bile, zamanla her segment için ayrı RFM yapmanız gerektiğini görürsünüz.

RFM çalışması sırasında (ki en azından tam bir gününüzü  alacağına kuşkunuz olmasın) başka ölçütlere ihtiyaç duyduğunuzu görebilirsiniz.

Bir çalışmada, ortalama işlem bedeli (ticket value) için de ölçüt geliştirmemizin gerekli olduğunu görmüştük. Yani o firma için RFM-T ölçütü geliştirildi.

😀

Birlikte okunmasını önerdiklerim:

😀

RFM uygulamasının yararları bir diğer yazıda… Bu sefer 6 ay beklemeden yayınlamayı umuyorum.

😛